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A different scheme to calculate the exchange tensor J= ij describing in a phenomenological way the anisotropic
exchange coupling of two moments in a magnetically ordered system is presented. The ab initio approach is
based on spin-polarized relativistic multiple-scattering theory within the framework of spin-density functional
theory. The scheme is applied to ferromagnetic CrTe as well as the diluted magnetic semiconductor system
Ga1−xMnxAs. In the latter case the results show that there is a noticeable anisotropy in the exchange coupling
present, although not as pronounced as those suggested in recent theoretical investigations.
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I. INTRODUCTION

The mapping of the energy of a magnetic solid calculated
from first principles for different magnetic configurations
onto a Heisenberg Hamiltonian is nowadays a widely used
concept that allows a number of interesting subsequent in-
vestigations. An example of this is the determination of the
Curie temperature of a ferromagnet by means of Monte
Carlo simulations using the calculated exchange coupling pa-
rameters Jij as input �i and j are indices labeling the indi-
vidual atomic sites�.1 Apart from fitting the Jij’s to the total
energies obtained for different magnetic configurations, one
can use the energies of spin spirals as basis for such
mapping.2 As an alternative one may use perturbation theory
that allows the calculation of the Jij’s directly. In fact the
expression derived by Liechtenstein et al.3 within the frame
work of nonrelativistic multiple-scattering theory is now suc-
cessfully used for a wide range of materials.4–6

Initiated among others by investigations on the magnetic
ground-state configuration of nanoscale systems, there is
strongly growing interest in the interplay of exchange cou-
pling and spin-orbit coupling �SOC�.7 Besides the magnetic
anisotropy energy, the spin-orbit coupling gives rise to an
anisotropic exchange coupling. Using again the above men-
tioned concept the isotropic exchange constants Jij have to
be replaced by a corresponding exchange coupling tensor J= ij.
By generalizing the approach of Liechtenstein et al.3 to a
fully relativistic formulation, Udvardi et al.8 derived corre-
sponding expressions for the elements of J= ij. Corresponding
applications to thin films as well as to finite deposited clus-
ters can be found in the literature.8,9 A disadvantage of the
expressions worked out by Udvardi et al.8 is that one has to
use various magnetic configurations as a reference state to
determine all elements of J= ij. In the following we present an
alternative approach that can be derived in a rather transpar-
ent way and does not have that problem. As demonstrated
both approaches give nevertheless results that are quite close
to each other. As an application of our present scheme we
present results for the exchange tensor J= ij in ferromagnetic
CrTe and in the diluted magnetic semiconductor �DMS� sys-
tem Ga1−xMnxAs. The latter will be discussed in relation to
the recent work of Timm and MacDonald,10 who used a
tight-binding description of the system in contrast to the ab

initio approach employed here that is based on local spin-
density approximation �LSDA�.

II. THEORETICAL APPROACH

The starting point of our derivation for J= ij is the expres-
sion for the change in energy �Eij of a system with a pertur-
bation taking place at sites i and j. An expression for �Eij
was worked out by several authors3,11 within the framework
of multiple-scattering theory and by making use of Lloyd’s
formula. The derivation of this expression can straightfor-
wardly be applied when working in the framework of spin-
polarized relativistic �SPR� multiple scattering or Korringa-
Kohn-Rostoker �KKR� �Ref. 12� formalism. Adopting the
convention for the corresponding electronic Green’s function
as used by Dederichs et al.,13 its off-site part is given by

G�r�i,r� j,E� = − ip �
���

R�
i �r�i,E�G���

ij �E�R��
j��r� j,E� , �1�

where G���
ij �E� is the so-called structural Green’s function,

R�
i is a regular solution to the single-site Dirac equation la-

beled by the combined quantum numbers � ��= �� ,���,
with � and � as the spin-orbit and magnetic quantum
numbers,14 and p is the electron momentum. The energy
change �Eij can then be written as3,11

�Eij = −
1

�
I� dE Tr �t�iG� ij�t�jG� ji, �2�

where �t�i is the change in the single-site t matrix due to the
perturbation �Vi�r�� at site i and the underline denotes matri-
ces with respect to the quantum numbers �. To the first order
in �Vi�r�� the change �t�i is given by

�t���
i =� d3rR��

i��r���V�r��R�
i �r�� = �V���

�R�i . �3�

Using instead the convention for the Green’s function as
used by Györffy and co-workers �see Ref. 15�, one may ex-
press �Eij in terms of the scattering path operator ����

ij �E�,
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�Eij = −
1

�
I� dE Tr �V� �Z�i�� ij�V� �Z�j�� ji, �4�

where use have been made of the relation G� ij

= ��� i�−1�� ij�t�j�−1 for i� j and the matrix elements �V���
�Z�i are to

be evaluated using the alternative set of regular solutions Z�
i

to the single-site Dirac equation.12,15

Changing the orientation of the spin magnetic moment m� i
within an atomic cell i and adopting the rigid spin approxi-
mation �RSA� �Ref. 16� imply a corresponding change in the

spin-dependent potential �	� B� �r�� by

�V�r�� = Vn̂�r�� − Vn̂0
�r�� = �	� �n̂ − n̂0�B�r�� , �5�

where � is one of the standard Dirac matrices and 	� is the
vector of 4�4-spin matrices.16 In writing Eq. �5� a collinear
spin magnetization within the cell has been assumed together
with a change in its orientation from n̂0 to n̂. Accordingly,
B�r�� corresponds to the difference in the spin-projected po-
tential functions B�r��= 1

2 �V↑�r��−V↓�r���.12 This leads for the
matrix elements �V���

�Z�i to

�V���
�Z�i = �


=x,y,z
�V���

�Z�i

�
 �6�

with

�V���
�Z�i
 =� d3rZ�

��r���	
B�r�Z���r�� . �7�

Comparison with the generalized Heisenberg Hamiltonian

Hex = −
1

2�
i,j

êiJ= ijê j �8�

with êi�j� as the orientation of the spin magnetic moment at
site i�j� allows one to write for the elements of the exchange
coupling tensor J= ij

Jij

i
j = −

1

�
I� dE Tr �V� �Z�
i�� ij�V� �Z�
j�� ji. �9�

The scheme outlined above has been implemented using
the SPR version of multiple-scattering theory.12,15 All calcu-
lations have been done within the framework of the LSDA to
spin-density functional theory.17 To represent the results for
the exchange tensor J= ij we use the conventional decomposi-
tion of the corresponding Heisenberg Hamiltonian in Eq.
�8�,8

Hex = −
1

2�
ij

êiJijêj −
1

2�
ij

êiJ= ij
S êj −

1

2�
ij

D� ij�êi � êj� .

�10�

Here Jij is the isotropic exchange coupling constant, J= ij
S is the

traceless symmetric part of J= ij, and the antisymmetric part is

represented by the Dzyaloshinski-Moriya �DM� vector D� ij. It
should be emphasized that isotropic in the context of Jij re-
fers to spin space and does not imply that there in no aniso-
tropy in real space, i.e., Jij will in general not only depend on

the distance �R� ij� between two sites but also on the orienta-

tion R̂ij of the distance vector.

III. RESULTS AND DISCUSSION

To demonstrate the application of our approach we
present in Figs. 1 and 2 the results for the coupling param-

eters Jij and D� ij of the two inequivalent Cr atoms in ferro-
magnetic CrTe having the NiAs structure. The isotropic pa-
rameters Jij shown in Fig. 1 reflect dominating ferromagnetic
coupling that is quite far reaching, i.e., slowly decaying. As
one notes, the isotropic exchange coupling between a central
Cr atom in layer 1 �denoted by Cr1� and another Cr atom in
layers 1 and 2 �denoted by Cr1 and Cr2 and represented by
squares and circles, respectively, in Fig. 1� is in the same
order of magnitude. This means that there is no remarkable
spatial anisotropy imposed by the layered structure of the
system for the isotropic coupling constant Jij. The anisotropy
of the exchange coupling is represented by J= ij

S as well as by

D� ij. As J= ij
S turns out to be quite small we show in Fig. 2 only

the three components of the DM vector D� ij. Many of the DM
vector components are zero due to symmetry restrictions.18

In particular one finds a nonzero DM vector D� ij only if the
sites i and j belong to different sublattices Cr1 and Cr2. The
different behavior of the x, y, and z components is deter-
mined by the lattice symmetry and reflects obviously to some
extent the quasilayered structure of the system �hexagonal Cr
layers with Te layers in between�. However, the anisotropic
exchange coupling is still about 2 orders of magnitude
smaller than the isotropic one.

As the comparison of the results for Jij and D� ij obtained
using the approach presented above and that of Udvardi et
al.8 �in Figs. 1 and 2, respectively� demonstrates, both
schemes give very similar results. This also holds for other
systems studied so far with most pronounced differences oc-
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FIG. 1. �Color online� Isotropic exchange interaction parameters
Jij between Cr atoms at sites i and j in ferromagnetic CrTe as a
function of the interatomic distance Rij. The results based on the
present approach �full symbols� are compared to the results ob-
tained using the approach of Udvardi et al. �Ref. 8� �open symbols�.
Circles and squares represent the coupling of a Cr atom in layer 1
�Cr1� to another Cr atom in layer 1 �Cr1� or layer 2 �Cr2�,
respectively.
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curring for the DM vector. It should be stressed, however,
that the above scheme allows one to determine J= ij with re-
spect to one common reference state, i.e., there is no need to
use various reference states to get all tensor elements. This
ensures that the results for the various elements are always
consistent even when the choice of the reference state influ-
ences the result, e.g., when the RSA is not fully justified.

To demonstrate that the DM interaction is indeed induced
by SOC we performed model calculations with the strength
of SOC artificially increased by a factor of 2. While the
isotropic exchange coupling constants Jij hardly changed, the
DM vector components increased essentially by the same
factor. This can be seen by comparing Dij

y �given in Fig. 3�
with the results in Fig. 2 �middle�.

Figures 4 and 5 show the results of an application of our
approach to the diluted magnetic semiconductor system
Ga1−xMnxAs. The Mn atoms were assumed to replace substi-
tutionally the Ga atoms in a random way. The disorder on the
Ga sublattice was accounted for by means of the coherent
potential approximation �CPA� alloy theory.4–6 The isotropic
exchange coupling �Fig. 4� and also its concentration depen-
dence agree quite well with the results of other authors,6

indicating in particular that the spin-orbit coupling accounted
within the present work affects the isotropic exchange cou-
pling only slightly. As mentioned above and as was noted by
other authors6,19 there is a directional dependency for Jij.
This is demonstrated in Fig. 6 where results for the concen-
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FIG. 2. �Color online� Components of the Dzyaloshinski-

Moriya interaction vector D� ij �from top to bottom: x ,y ,z� between
Cr atoms at sites i and j in ferromagnetic CrTe as a function of the
interatomic distance Rij. The results based on the present approach
�full circles� are compared to the results obtained using the ap-
proach of Udvardi et al. �Ref. 8� �open squares�.
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FIG. 3. �Color online� The same as in Fig. 2 middle but with
spin-orbit coupling scaled by a factor 2.
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FIG. 4. �Color online� Isotropic exchange interaction Jij be-
tween Mn atoms at sites i and j in Ga1−xMnxAs, scaled by the factor
�Rij /a�2, as a function of the interatomic distance Rij. Results are
given for 7 at. % Mn �full circles� and for 4 at. % Mn �open
squares�.
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tration x=0.04 are given for R̂ij along �001�, �110�, and �111�
separately. As for the magnitude of Jij, this spatial anisotropy
of Jij is only slightly influenced by inclusion of SOC. In
contrast to this SOC is ultimately responsible for the aniso-
tropy in the exchange coupling represented by the DM vector
shown in Fig. 5. �As for CrTe, the symmetric part of J= ij
—symmetric term in Eq. �10�—can again be neglected.� All
three components of the DM vectors are of the same order of

magnitude as a consequence of the zinc-blende structure of
Ga1−xMnxAs.

Although it seems not possible to give a simple scaling
behavior of the magnitude of the exchange coupling param-
eters with respect to the interatomic distance Rij, one notes
that the components of D� ij decay less rapidly as Jij with
increasing Rij. This behavior was also found for other sys-
tems and is in line with the findings of Timm and
MacDonald.10 However, it should be pointed out that these
authors explicitly assumed that a Ruderman-Kittel-Kasuya-
Yosida �RKKY�-type mechanism gives rise to the exchange
coupling. In fact it has been doubted whether the assumption
of RKKY-type coupling as adequate for DMS systems20 and
other mechanisms as double exchange has been discussed.21

In contrast to the mentioned previous work, no specific cou-
pling mechanism is assumed a priori but the exchange cou-
pling tensor is derived directly from the change in energy
with a change in the orientation of the magnetic moments. In
fact, our results for the isotropic as well as anisotropic ex-
change coupling constants differ quite appreciably from
those obtained recently in a more phenomenological way by
the authors of Ref. 10. In particular the tensor elements rep-
resenting anisotropic exchange are found to be around 1 or-
der of magnitude smaller than those given in the previous
work. The anisotropy of the DM interaction is demonstrated
in Fig. 7 for the component Dij

x . As one notes Dij
x depends

quite strongly in the direction Rij. In particular one finds Dij
x

to be zero, e.g., for the �111� direction due to symmetry. Also
because of the symmetry of the system one finds for each
direction a symmetry-related one for which the sign of Dij

x is
reversed.

The presence of a noncollinear ferromagnetic structure in
Ga1−xMnxAs is assumed to be partially responsible for the
missing of remanent magnetization observed experimentally
in annealed samples.22–24 In particular, the remanent magne-
tization in this DMS system can be noticeably increased in
the presence of a rather small magnetic field. Such a behav-
ior could indeed be explained by the presence of noncol-
linear magnetism in the system.23 The anisotropy of the ex-
change coupling in Ga1−xMnxAs was studied theoretically by
various authors10,25–27 to find whether it can be responsible
for the formation of a noncollinear ferromagnetic structure as
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FIG. 5. �Color online� Components of Dzyaloshinski-Moriya

interaction vector D� ij �from top to bottom: x ,y ,z� between Mn at-
oms at sites i and j in Ga1−xMnxAs, scaled by the factor �Rij /a�2, as
a function of the interatomic distance Rij. Results are given for
7 at. % Mn �full circles� and for 4 at. % Mn �open squares�.
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FIG. 6. �Color online� Scaled exchange interactions �Rij /a�2Jij

in ferromagnetic Ga1−xMnxAs, where x=0.04, as a function of the
interatomic distance Rij along different directions.
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a ground state in this DMS system. However, these investi-
gations were based on phenomenological or semiphenom-
enological approach and the results obtained are rather con-
troversial. In contrast to this, the present approach allows us
to evaluate the elements of the exchange coupling tensor �in
particular, its antisymmetric part representing the DM cou-
pling� on the basis of ab initio electronic structure calcula-
tions. As was demonstrated above, this leads indeed to a
rather large value for the DM coupling in Ga1−xMnxAs,
which is only about 1 order of magnitude smaller than for the
isotropic exchange. As mentioned, this finding is in line with
the results of Timm and MacDonald.10 Obviously, the values
for the DM coupling term cannot be considered as negligibly
small, and as a consequence one cannot exclude a noticeable

noncollinear ferromagnetic order in the system. To clarify
this question corresponding Monte Carlo simulations based
on the calculated exchange tensor will be performed.

IV. SUMMARY

A different scheme to calculate the exchange coupling
tensor J= ij has been presented that is based on ab initio elec-
tronic structure calculations using spin-polarized fully rela-
tivistic multiple-scattering theory and spin-density functional
theory. Application to ferromagnetic CrTe as well as to other
systems demonstrates that the approach gives results for the
exchange tensor elements very similar to those obtained us-
ing the approach of Udvardi et al.8 However, the present
approach makes use of a unique reference state ensuring the
internal consistency of the tensor elements. Application to
the diluted magnetic semiconductor system Ga1−xMnxAs led
to an isotropic exchange in full accordance with previous
nonrelativistic calculations that were also based on ab initio
electronic structure calculations. The results obtained for the
anisotropic exchange coupling are in accordance with the
data of Timm and MacDonald10 concerning the variation
with distance. However, numerically the coupling constants
obtained by the present ab initio approach and the more phe-
nomenological scheme of these authors differ in an appre-
ciable way.
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